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COMMENT 

A note on the kinetics of wetting transitions in two-dimensional 
lattice-gas systems 

Tapio Ala-Nissilat, Kari Kankaalat$ and Kimmo Kaski$ 
t Department of Physics, Brown University, Providence, Rhode Island 02912, USA 
$ Microelectronics Laboratory, Tampere University of Technology, PO Box 527, SF-33101 
Tampere, Finland 

Received 18 January 1989 

Abstract. We present results of Monte Carlo simulations on the kinetics of wall-wall 
wetting transitions in the two-dimensional three-state chiral clock and anisotropic next- 
nearest-neighbour Ising models. We confirm the existence of an algebraic growth law for 
the width of the wetting layer ( W ( t ) )  - t”4 in the limit of large systems and long enough 
times at non-zero temperatures. We also discuss finite-size and temperature dependence 
of the effective growth exponents in these two models. 

1. Introduction 

The kinetics of wetting transitions have recently been studied theoretically in various 
systems (Lipowsky 1985, Grant et a1 1987, Mon et a1 1987, Dietrich 1987, Grant 1988). 
Theoretical calculations of a continuum Langevin model with no conservation laws 
predict a universal algebraic growth law for the width of the wetting layer ( W (  t ) )  - tX, 
with x = 1/4 for short-range lattice-gas models in two dimensions above roughening 
temperature (Lipowsky 1985, Grant 1988). Recently, this prediction was qualitatively 
confirmed in the two-dimensional three-state chiral clock model (Grant er a1 1987). 
In this study, however, a strong temperature dependence of x was observed, which 
made it difficult to verify universal behaviour at lower temperatures. 

In this comment, we present a somewhat more detailed Monte Carlo study of the 
kinetics of wall-wall wetting transitions in two distinct lattice-gas models, namely in 
the two-dimensional three-state chiral clock (cc3) and the anisotropic next-nearest- 
neighbour Ising (ANNNI)  models. We extend the previous results obtained for the cc3 
model at various temperatures (Grant er al 1987) to include systems of different sizes, 
and confirm the existence of an asymptotic universal growth exponent x = 1/4 in the 
limit of large systems and long enough times. For the ANNNI model we present a 
similar but more limited study. 

2. The chiral clock model 

The three-state chiral clock model has been widely studied with different methods, 
and the equilibrium properties and details of its phase diagram are fairly well known 
(Ostlund 1981, Huse 1981, Selke and Pesch 1982, Selke and Yeomans 1982, Huse et 
a1 1983, Houlrik et a1 1983, Duxbury et a1 1984, Armitstead er a1 1986). This model 
has three equilibrium phases: a paramagnetic, a ferromagnetic (3 x 1) and a floating 
incommensurate phase. 
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The Hamiltonian of the cc3 model is 

2 T  H = -J  cos ( & ( n ,  - n, + A ) )  - J f cos (7 ( n ,  - n,)) 
(11) 3 ( v )  

where J is the interaction constant, ni = 0, 1,2 is the spin value at site i, and A is the 
chiral field which is applied in the anisotropic x direction. The summation is taken 
over nearest neighbours both in the x and y directions. 

The wetting transition in this model occurs within the threefold degenerate ferro- 
magnetic phase (with phases A, B and C) as a function of the chiral field A when an 
initially stable wall A 11 C decomposes into two identical walls of the type A /  B, namely 
A 1 1  C + A /  B 1 C. This wetting transition is of second order, and its properties have been 
studied in detail (Huse et a1 1983, Huse and Fisher 1984, Fisher 1984, Armitstead et 
a1 1986). 

The kinetics of adsorption of the intruding layer B was studied by two of the present 
authors in an earlier letter (Grant et a1 1987) by Monte Carlo (MC) methods using 
standard Glauber spin-flip dynamics. Various values of k ,T /J  were simulated for two 
large systems. After a non-universal early-time behaviour, it was found that the growth 
indeed reaches a universal dynamical behaviour, with x - 0.25 at relatively high 
temperatures. However, a strong temperature dependence of x due to a crossover to 
a logarithmic growth law at T = 0, together with relatively short times studied, made 
it difficult to extract x below k ,  T /  J - 0.3. 

In this comment we have extended the MC simulations to include a more systematic 
study of temperature and, in particular, finite-size dependence of x. First, to study 
temperature effects, systems of sizes 102x 102 at k ,T /J  =0.3, 0.4 and 108 x 3 6  at 
k B T / J  = 0.4, 0.5, 0.6 were simulated (for details, see Grant et a1 (1987)). For these 
two sizes we expect the finite-size effect to be quite small. In table 1 we show the 
numerical results of least-squares fitting to simulated data of figure 1 at different 
temperatures. After one monolayer is completed, a fluctuation-driven growth is 
observed in the model and a universal dynamical exponent x = 0.25 is extracted at all 
these temperatures. At lower T, relatively long times are needed to reach the asymptotic 
regime. 

Finite-size effects in the cc3 model were studied by preparing lattices of sizes 
16 x 16, 34 x 34, 64 x 64, 102 x 102 and 204 x 204 at T = 0.65, where we expect to see 
the asymptotic growth law already at relatively early times (see table 2). In general, 
we expect the growth law at high temperatures (where crossover effects from T=O 

Table 1. Numerical least-squares fits to the cc3 data corresponding to figure 1. The 
exponent x is a result of fitting data to the expression ( W- W O )  = A(t - 1,)' where I, is 
an initial time after which the fluctuation-driven growth was observed, and A is a constant. 
The other exponent .f was obtained by fitting a straight line to the logarithm of the raw 
data, i.e. In( W - WO) = B + x' In( t - t o ) ,  where B is a constant. A is the error bar estimated 
from the central-limit theorem and must be considered conservative. 

0.6 0.28 40-5000 0.28 100-5000 0.02 
0.5 0.30 40-9500 0.29 240- 9 5 00 0.02 
0.4 0.27 40-5000 0.25 940-5000 0.02 
0.3 0.26 6000-10000 0.26 7000-10000 0.02 
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Figure 1. Time development of the net width ( W ( f ) )  of the wetting layer in the cc3 model 
at four different temperatures k,T/J  = 0.3, 0.4, 0.5 and 0.6. The lowest temperature data 
are for a 108 x 32 lattice, while the other results are for 102 x 102 lattices (at k,T/J  = 0.4 
the simulations for a 108 x 32 lattice gave identical results to those for the larger lattice). 
Numerical fits to these data are given in table 1. 

can be neglected) to have the finite-size scaling form? (Kroll and Gompper 1989) 

where F is a scaling function with F ( 0 )  = 1, and F ( y )  - y”’ for y > y,. Here L denotes 
(W(t ) ) -  t”*F( t , , ( t ) /Q  (2) 

+ 
Q 

0 .4  

Q 

0 0.016 0.032 0.048 0.064 

1/L 
Figure 2. The effective dynamical exponent x as a function of I /  L for five different system 
sizes at k, T /  J = 0.6 (see the text). The data point for L = 204 was taken from an earlier 
study (Grant er a1 1987). There is a crossover from a diffusive 1/2 exponent to the universal 
value x = 1/4 as the system size increases (see table 2). 

t Here we consider only the effects of boundaries in the direction parallel to the walls, i.e. L = LII. In general, 
we expect the corresponding finite-size behaviour to be different from that in the direction perpendicular 
to the walls (where periodic boundary conditions are not used), since the behaviour of the two associated 
correlation lengths .$(t) and t1(r) is different (Lipowsky (1985); see also Kroll and Gompper (1989)). A 
more general scaling function replacing F ( y )  would be ofthe form G(t,( r ) / L , ,  t , , (r) /L, , ) ,  with G(z,  0) - z-I 
for z > z, .  This describes the final crossover to ( W( r)) - L, .  
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Table 2. Numerical least-squares fits of the effective exponents x and 2 for different system 
sizes for the cc3 model. Notation is the same as in table 1. 

Size Y A t / M C S  J A T / M C S  *A 

16 x 16 0.54 30-500 0.56 244-500 0.02 
34 x 34 0.51 30-800 0.5 1 218-500 0.02 
64 x 64 0.46 15-800 0.45 1 10-800 0.03 

102 x 102 0.28 40-5000 0.28 100-5000 0.02 

the system size, and the diverging parallel interfacial correlation length tli( r )  - r ’ ” .  
Namely, for small systems as y,= t l r ( r , ) / L -  1, we expect to observe a crossover to a 
quasi-one-dimensional diffusive growth law - r’/’/a (Mon et a1 1987). 

In figure 2 we plot the effective exponent x as a function of 1 / L  as obtained for 
the five different system sizes. For the smallest lattices, x is close to 1/2 but crosses 
quite rapidly over to the asymptotic value 1/4. As expected from a scaling law of the 
form (2), the effective exponent seems to follow no simple scaling form. This rather 
non-trivial finite-size behaviour clearly warrants further study. 

3. The ANNNI model 

The anisotropic next-nearest-neighbour Ising ( A N N N I )  model (Selke 1988) has a spin 
Hamiltonian of the form 

where J ,  > 0, i = 0, 1,2, and the summation goes over all sites of a square lattice with 
Ising spins su = *l. Using the standard parametrisation cy = J 2 / J 0  and J ,  = (1 - cu)Jo, 
for CY > 1/3 (at T = 0) the A N N N I  model displays a uniaxial (4 x 1 )  phase with four 
degenerate ground states A, B, C and D. The wetting transition in the A N N N I  model 
occurs when a soft superheavy/light A 1 1  D wall decays into three heavy/light walls, 
i.e. A 11 D + A 1 B I C 1 D. The properties of this wetting transition have been studied in 
detail, and  the wetting line has been theoretically computed (Ala-Nissila et a1 1986, 
Rujan er a1 1985, 1986). 

To study the dynamics of wetting in the A N N N I  model, we have simulated systems 
of sizes 128x32 and 256x64, where the larger dimension is along the anisotropic x 
direction. The systems were made unstable by decreasing CY instantaneously to a value 
within the wet region (typically values such as cy = 0.4 and 0.47 were used for low and 
high temperatures, respectively). Consequently, the combined width of the adsorption 
layers B and C was monitored in time. A minimum of 1000 runs were performed for 
the smaller systems and time sampling of the data was done at 200 points. The results 
for the larger system are averages of 672 configurations. 

In figure 3 we depict the net adsorption ( W ( r ) )  for 128 x 32 systems at four distinct 
temperatures, namely k B T / J o  = 0.5,0.65,0.75 and 1.0. A striking feature in these results 
is a clear change in the slope of these curves as a function of temperature. For 
k a T / J o  = 0.5 the slope is largest, and  decreases monotonically for increasing tem- 
perature, as is evident in table 3. Nevertheless, there exists a reasonably well defined 
effective dynamical exponent x for all T. At k B T / J o  = 0.5 it is close to 0.5, and  crosses 
over slowly to the expected value x = 0.25 as temperature increases. 
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Figure 3. Time dependence of the net width ( W (  f ) )  of the wetting layer in the ZD A N N N I  

model at four temperatures kBT/J0=0.5, 0.65, 0.75 and 1.0. These simulations were 
performed for a 128 x 32 lattice. Numerical fits to this data are given in table 3. 

Table 3. Numerical least-squares fits of the effective exponents x and 2 to the kinetics of 
growth of the wetting layers B and C for A N N N I  model for various temperatures and two 
lattice sizes. For notation, see table 1. 

Size k , T / J ,  x ht/hncs X ~ i /  MCS *A 

128x32  0.5 0.47 1000-5000 0.45 5000- 10 000 0.02 
1 2 8 x 3 2  0.65 0.42 500-2000 0.39 1000-3000 0.02 
1 2 8 x 3 2  0.75 0.32 200-2000 0.34 1000-3000 0.02 
128x32  1.0 0.23 100-2000 0.23 1000-2000 0.01 
2 5 6 x 6 4  0.75 0.22 1050-5000 0.26 5000-10 000 0.02 

As we can see from figure 3, the apparent temperature dependence of x is quite 
different from that of the cc3 model. To clarify this effect, we have also simulated a 
256x64 system at k g T / J o = 0 . 7 5 .  The last row in table 3 lists numerical fits to this 
data. Unlike the case for the smaller system, a dynamical exponent close to the value 
of 0.25 is readily obtained. Thus, we conclude that the finite-size effects are rather 
pronounced for the ANNNI model, but that the asymptotic exponent x = 1/4 still holds. 

To summarise, in this comment we have verified the existence of an asymptotic 
growth exponent x = 1/4 for the kinetics of wetting transitions in the two-dimensional 
three-state chiral clock and anisotropic next-nearest-neighbour Ising models. We have 
studied in some detail the temperature and finite-size dependence of x for both models. 
Clearly, more theoretical work and more extensive simulations are needed to study 
these interesting and non-trivial effects in greater detail. 
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